Functions preserving slowly oscillating double sequences
نویسندگان
چکیده
A double sequence x = {xk,l} of points in R is slowly oscillating if for any given ε > 0, there exist α = α(ε) > 0, δ = δ(ε) > 0, and N = N(ε) such that |xk,l−xs,t| < ε whenever k, l ≥ N(ε) and k ≤ s ≤ (1 + α)k, l ≤ t ≤ (1 + δ)l. We study continuity type properties of factorable double functions defined on a double subset A × A of R into R, and obtain interesting results related to uniform continuity, sequential continuity, and a newly introduced type of continuity of factorable double functions defined on a double subset A×A of R into R.
منابع مشابه
A Tauberian theorem for $(C,1,1)$ summable double sequences of fuzzy numbers
In this paper, we determine necessary and sufficient Tauberian conditions under which convergence in Pringsheim's sense of a double sequence of fuzzy numbers follows from its $(C,1,1)$ summability. These conditions are satisfied if the double sequence of fuzzy numbers is slowly oscillating in different senses. We also construct some interesting double sequences of fuzzy numbers.
متن کاملΔ-quasi-slowly Oscillating Sequences in Locally Normal Riesz Spaces
In this paper, we introduce the notion of δ-quasi-slowly oscillating sequences, study on δ-quasi-slowly oscillating compactness and δ-quasi-slowly oscillating continuous functions in locally normal Riesz space.
متن کاملNew Types of Continuities
and Applied Analysis 3 Proof. The proof follows from Theorem 2.1. The following theorem shows that on a slowly oscillating compact subset A of R, slowly oscillating continuity implies uniform continuity. Theorem 2.3. Let A be a slowly oscillating compact subset of R and let f : A → R be slowly oscillating continuous on A. Then f is uniformly continuous on A. Proof. Assume that f is not uniforml...
متن کاملSummability of double sequences by weighted mean methods and Tauberian conditions for convergence in Pringsheim's sense
After a brief summary of Tauberian conditions for ordinary sequences of numbers, we consider summability of double sequences of real or complex numbers by weighted meanmethods which are not necessarily products of related weighted mean methods in one variable. Our goal is to obtain Tauberian conditions under which convergence of a double sequence follows from its summability, where convergence ...
متن کاملOn difference sequence spaces defined by Orlicz functions without convexity
In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.
متن کامل